翻訳と辞書
Words near each other
・ Cayeye
・ Cayfano Latupeirissa
・ Caygill
・ Cayla Francis
・ Cayla Kluver
・ Cayle Chernin
・ Caylee's Law
・ Caylen Croft
・ Cayler Prairie State Preserve
・ Cayley
・ Cayley (crater)
・ Cayley (surname)
・ Cayley baronets
・ Cayley Glacier
・ Cayley graph
Cayley plane
・ Cayley process
・ Cayley surface
・ Cayley table
・ Cayley transform
・ Cayley's formula
・ Cayley's mousetrap
・ Cayley's nodal cubic surface
・ Cayley's ruled cubic surface
・ Cayley's sextic
・ Cayley's theorem
・ Cayley's Ω process
・ Cayley, Alberta
・ Cayley/A. J. Flying Ranch Airport
・ Cayleyan


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Cayley plane : ウィキペディア英語版
Cayley plane
In mathematics, the Cayley plane (or octonionic projective plane) P2(O) is a projective plane over the octonions.〔Baez (2002).〕 It was discovered in 1933 by Ruth Moufang, and is named after Arthur Cayley (for his 1845 paper describing the octonions).
More precisely, there are two objects called Cayley planes, namely the real and the complex Cayley plane.
The real Cayley plane is the symmetric space F4/Spin(9), where F4 is a compact form of an exceptional Lie group and Spin(9) is the spin group of nine-dimensional Euclidean space (realized in F4). It admits a cell decomposition into three cells, of dimensions 0, 8 and 16. 〔Iliev and Manivel (2005).〕
The complex Cayley plane is a homogeneous space under a noncompact (adjoint type) form of the group E6 by a parabolic subgroup ''P''1. It is the closed orbit in the projectivization of the minimal representation of E6. The complex Cayley plane consists of two F4-orbits: the closed orbit is a quotient of F4 by a parabolic subgroup, the open orbit is the real Cayley plane.〔Ahiezer (1983).〕
== Properties ==
In the Cayley plane, lines and points may be defined in a natural way so that it becomes a 2-dimensional projective space, that is, a projective plane. It is a non-Desarguesian plane, where Desargues' theorem does not hold.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Cayley plane」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.